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Abstract

Results are presented from a search for the production of a heavy gauge boson W′

decaying into a top and a bottom quark, using a data set collected by the CMS ex-
periment at

√
s = 8 TeV and corresponding to an integrated luminosity of 19.5 fb−1.

Various models of W′-boson production are studied by allowing for an arbitrary com-
bination of left- and right-handed couplings. The analysis is based on the detection of
events with a lepton (e, µ), jets, and missing transverse energy in the final state. No ev-
idence for W′-boson production is found and 95% confidence level upper limits on the
production cross section times branching fraction are obtained. For W′ bosons with
purely right-handed couplings, and for those with left-handed couplings assuming
no interference effects, the observed 95% confidence level limit is M(W′) > 2.05 TeV.
For W′ bosons with purely left-handed couplings, including interference effects, the
observed 95% confidence level limit is M(W′) > 1.84 TeV. The results presented in
this paper are the most stringent limits published to date.

Submitted to the Journal of High Energy Physics

c© 2014 CERN for the benefit of the CMS Collaboration. CC-BY-3.0 license

∗See Appendix A for the list of collaboration members

ar
X

iv
:1

40
2.

21
76

v1
  [

he
p-

ex
] 

 1
0 

Fe
b 

20
14

FERMILAB-PUB-14-078-CMS

http://creativecommons.org/licenses/by/3.0




1

1 Introduction
Massive charged gauge bosons, generically referred to as W′, are predicted by various exten-
sions of the standard model (SM) [1–5]. Searches for W′ bosons at the Large Hadron Collider
(LHC) have been conducted in the lepton-neutrino, diboson, and light-quark final states [6–15].
While the most stringent limits come from the searches in the leptonic final states (W′ → `ν
where ` is a charged lepton), these constraints do not apply to W′ bosons with purely right-
handed couplings if the mass of the hypothetical right-handed neutrino is larger than a few
GeV [16]. Dedicated searches for W′ bosons with purely right-handed couplings have been
performed by the CMS and ATLAS Collaborations assuming the mass of the right-handed
neutrino is less than the mass of the W′ boson [17, 18]. Searches for right-handed W′ bosons
that decay to a quark final state such as W′+ → tb (or charge conjugate) make no assumptions
regarding the mass of the right-handed neutrino and are thus complementary to searches in the
leptonic channels. Furthermore, the decay chain W′ → tb, t → bW → b`ν is in principle fully
reconstructable, thereby leading to observable resonant mass peaks even in the case of broad
W′ resonances. In addition, because of the presence of leptons in the final state, it is easier to
suppress the continuum multijet background for this decay chain than for a generic W′ → qq′

decay. Finally, in some models the W′ boson may couple more strongly to fermions of the third
generation than to fermions of the first and second generations [19, 20]. Thus the W′ → tb
decay is an important channel in the search for W′ bosons.

Experimental searches for W′ → tb decays have been performed at the Tevatron [21–23] and
at the LHC [24, 25]. The CMS search at

√
s = 7 TeV [24] set the best present mass limit in this

channel of 1.85 TeV for W′ bosons with purely right-handed couplings. If the W′ boson has
left-handed couplings, interference between W′ → tb and SM single-top-quark production via
W → tb can contribute as much as 5–20% of the total W′ rate, depending on the W′ mass and
couplings [26]. This interference effect was taken into account in the CMS search. The CMS
analysis also set constraints on an arbitrary set of left- and right-handed couplings of the W′

boson.

This Letter describes the first W′ → tb search in pp collisions at
√

s = 8 TeV and uses data
collected by the CMS experiment corresponding to an integrated luminosity of 19.5 fb−1. For
a W′ boson with a mass of 2 TeV, the production cross section at

√
s = 8 TeV is larger by ap-

proximately a factor of two compared to
√

s = 7 TeV [27]. The data set used in this analysis
corresponds to an integrated luminosity that is approximately a factor of four larger than that
in the

√
s = 7 TeV analysis. Following the approach of the earlier publication [24], we anal-

yse events with an electron (e) or muon (µ), jets, and missing transverse energy (Emiss
T ) for an

arbitrary combination of left- and right-handed couplings.

2 CMS detector
The central feature of the CMS detector is a superconducting solenoid of 6 m internal diameter,
providing a magnetic field of 3.8 T. Located within the superconducting solenoid volume are a
silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and
a brass and scintillator hadron calorimeter (HCAL). Muons are identified and measured in gas-
ionisation detectors embedded in the outer steel magnetic flux-return yoke of the solenoid. The
detector is subdivided into a cylindrical barrel and endcap disks on each side of the interaction
point. Forward calorimeters complement the coverage provided by the barrel and endcap
detectors. A more detailed description of the CMS detector can be found elsewhere [28].

The CMS experiment uses a right-handed coordinate system, with the origin at the nominal
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interaction point, the x axis pointing to the centre of the LHC ring, the y axis pointing up
(perpendicular to the plane of the LHC ring), and the z axis along the anticlockwise-beam
direction. The polar angle θ is measured from the positive z axis and the azimuthal angle φ is
measured in radians in the x-y plane. The pseudorapidity η is defined as η = − ln[tan(θ/2)].

The ECAL energy resolution for electrons with transverse energy ET ≈ 45 GeV from Z → ee
decays is better than 2% in the central region of the ECAL barrel (|η| < 0.8), and is between
2% and 5% elsewhere. The inner tracker measures charged particles within the pseudorapid-
ity range |η| < 2.5. It provides an impact parameter resolution of ∼15 µm and a transverse
momentum (pT) resolution of about 1.5% for 100 GeV particles. Matching muons to tracks
measured in the silicon tracker results in a relative transverse momentum resolution for muons
with 20 < pT < 100 GeV of 1.3–2.0% in the barrel and better than 6% in the endcaps. The pT
resolution in the barrel is better than 10% for muons with pT up to 1 TeV [29].

A particle-flow (PF) algorithm [30, 31] combines the information from all CMS subdetectors to
identify and reconstruct the individual particles emerging from all vertices: charged hadrons,
neutral hadrons, photons, muons, and electrons. These particles are then used to reconstruct
the Emiss

T (defined as the modulus of the negative transverse momentum vector sum of all mea-
sured particles), jets, and to quantify lepton isolation. The PF jet energy resolution is typically
15% at 10 GeV, 8% at 100 GeV, and 4% at 1 TeV, to be compared to about 40%, 12%, and 5%
obtained when the calorimeters alone are used for jet clustering.

3 Signal and background modelling
The W′ → tb → `νbb decay is characterized by the presence of a high-pT isolated lepton,
significant Emiss

T associated with the neutrino, and at least two high-pT b-jets (jets resulting from
the fragmentation and hadronization of b quarks). Monte Carlo (MC) techniques are used to
model the W′ signal and SM backgrounds capable of producing this final state.

3.1 Signal modelling

The signal modelling is identical to that in Ref. [24] and uses the following lowest order effec-
tive Lagrangian to describe the interaction of the W′ boson with SM fermions:

L =
Vfi f j

2
√

2
gw f iγµ

(
aR

fi f j
(1 + γ5) + aL

fi f j
(1− γ5)

)
W′µ f j + h.c., (1)

where aR
fi f j

, aL
fi f j

are the right- and left-handed couplings of the W′ boson to fermions fi and f j,
gw = e/(sin θW) is the SM weak coupling constant and θW is the weak mixing angle; Vfi f j is the
Cabibbo–Kobayashi–Maskawa matrix element if the fermion f is a quark, and Vfi f j = δij if it is
a lepton, where δij is the Kronecker delta and i, j are the generation numbers. For our search
we consider models where 0 ≤ aL,R

fi f j
≤ 1. For a SM-like W′ boson, aL

fi f j
= 1 and aR

fi f j
= 0.

We simulate W′ bosons with mass values ranging from 0.8 to 3.0 TeV. The SINGLETOP MC gen-
erator [27] is used, which simulates electroweak top-quark production processes based on the
complete set of tree-level Feynman diagrams calculated by the COMPHEP package [32]. Finite
decay widths and spin correlations between resonance state production and subsequent decay
are taken into account. The factorisation scale is set to the W′-boson mass for the generation of
the samples and the computation of the leading-order (LO) cross section. The LO cross section
is scaled to next-to-leading order (NLO) using a K factor of 1.2 based on Refs. [33, 34]. In order
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to ensure that the NLO rates and shapes of relevant distributions are reproduced, the SINGLE-
TOP generator includes NLO corrections, and normalisation and matching between various
partonic subprocesses are performed. The top-quark mass is chosen to be 172.5 GeV and the
CTEQ6M [35] parton distribution functions (PDF) are used. The uncertainty in the cross sec-
tion is about 8.5% and includes contributions from the uncertainties in the renormalisation and
factorisation scales (3.3%), PDFs (7.6%), αs (1.3%), and the top-quark mass (<1%).

We produce the following sets of signal samples:

• W′L with aL
ud = aL

cs = aL
tb = 1 and aR

ud = aR
cs = aR

tb = 0

• W′R with aL
ud = aL

cs = aL
tb = 0 and aR

ud = aR
cs = aR

tb = 1

• W′LR with aL
ud = aL

cs = aL
tb = 1 and aR

ud = aR
cs = aR

tb = 1

The W′L bosons couple to the same fermion multiplets as the SM W boson. As a consequence,
there will be interference between s-channel tb production via a W boson and via a W′L boson.
These two processes therefore cannot be generated separately. Thus the W′L and W′LR samples
include SM s-channel tb production including its interference with the W′L signal. Production
of a tb final state via a W′R boson does not interfere with tb production via a W boson and
therefore the W′R sample only includes W′ production.

The W′R boson can only decay leptonically if there is a right-handed neutrino νR of sufficiently
small mass, M(νR), so that M(νR)+ M(`) < M(W′). If the mass of the right-handed neutrino is
too large, W′R bosons can only decay to qq′ final states, leading to different branching fractions
for the W′R → tb decay than for the W′L → tb decay. In the absence of interference between
the SM W boson and the W′ boson, and if there is a light right-handed neutrino, there is no
practical difference for our search between W′L and W′R bosons.

3.2 Background modelling

The tt, W+jets, single-top-quark (s-channel, t-channel, and tW associated production), Z/γ∗+jets,
and diboson (WW) background contributions are estimated from simulation, with corrections
to the shape and normalisation derived from data.

The tt, W+jets, and Z/γ∗+jets background processes are generated with MADGRAPH 5.1 [36].
The tt background is normalized to the next-to-NLO (NNLO) cross section [37]. The SM single-
top-quark backgrounds are estimated using samples generated with POWHEG [38], normalized
to an approximate NNLO cross section [39]. For the W′R search, s-channel, t-channel, and tW
single-top-quark events are considered as backgrounds. Because of interference between W′

and s-channel single-top-quark production, in the analysis for W′L and W′LR bosons only the
t-channel and the tW processes contribute to the background. The diboson (WW) background
is generated with PYTHIA 6.424 [40].

3.3 Simulation

For all simulated samples, PYTHIA tune Z2* [41] is used for parton showering, hadronisation,
and simulation of the underlying event. The PYTHIA and MADGRAPH backgrounds use the
CTEQ6L1 PDFs, and the POWHEG backgrounds use the CTEQ6M PDFs [35]. The resulting
events are processed with the full GEANT4 [42] simulation of the CMS detector. The additional
proton-proton interactions in each beam crossing (pileup) are modelled by superimposing ex-
tra minimum-bias interactions onto simulated events, with the distribution of the number of
pileup interactions matching that in data.
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4 Object and event preselection
The analysis relies on the reconstruction of electrons, muons, jets, and Emiss

T . Candidate events
are required to pass an isolated electron (muon) trigger with a pT threshold of 27 (24) GeV
and to have at least one reconstructed pp interaction vertex. In the offline selection, exactly
one electron (muon) is required to be within the region of |η| < 2.5 (2.1). Additionally, the
barrel/endcap transition region, 1.44 < |η| < 1.56, is excluded for electrons. Electrons and
muons are required to satisfy pT > 50 GeV and a series of identification and isolation criteria.
Electron candidates are selected using shower shape information, the quality of the track, the
matching between the track and the electromagnetic cluster, the fraction of total cluster en-
ergy in the HCAL, and the amount of activity in the surrounding regions of the tracker and
calorimeters. Events are removed whenever the electron is found to originate from a converted
photon. The track associated with a muon candidate is required to have at least one pixel hit,
hits in at least six layers of the inner tracker, at least one hit in the muon detector, and a good
quality fit with χ2/d.o.f. < 10. Both electrons and muons are separated from jets by requiring
∆R(jet, `) =

√
(∆η)2 + (∆φ)2 > 0.3. Additionally, the cosmic ray background is effectively

eliminated by requiring the transverse impact parameter of the muon with respect to the beam
spot to be less than 2 mm. Electrons (muons) are required to have PF based relative isolation,
I rel, less than 0.10 (0.12). The quantity Irel is defined as the sum of the transverse momenta
of all additional reconstructed particle candidates inside a cone around the electron (muon) in
(η, φ) of ∆R < 0.3 (0.4), divided by the pT of the electron (muon). An event-by-event correction
is applied to the computation of the lepton isolation in order to account for the effect of pileup.
Events containing a second lepton with looser identification and isolation requirements are also
rejected. Scale factors, derived from comparing the efficiencies measured in data and simula-
tion using Z → `` events, are obtained for lepton identification and isolation as a function of
lepton pT and η. These are applied as corrections to the simulated events.

Jets are clustered using the anti-kT algorithm [43] with a distance parameter of R = 0.5 and are
required to satisfy pT > 30 GeV and |η| < 2.4. At least two jets are required in the event with
the highest-pT (leading) jet pT > 120 GeV and the second leading jet pT > 40 GeV. The jet pT
in the simulated samples is smeared to account for the better jet energy resolution observed in
the simulation compared to data [44]. Jet energy corrections are applied to correct for residual
non-uniformity and non-linearity of the detector response. Jet energies are also corrected by
subtracting the average contribution from pileup interactions [45, 46].

The final state of the W′ → tb decay includes two b quarks; therefore at least one of the two
leading jets is required to be tagged as a b-jet. We use the combined secondary vertex tagger
with the medium operating point [47]. Data-to-simulation scale factors for the b-tagging effi-
ciency and the light-quark or gluon (udsg) jet mistag rate are applied on a jet-by-jet basis to
all b-jets, c-jets, and udsg jets in the simulated events. Scale factors are also applied to W+jets
events in which a b, c, or udsg jet is produced in association with the W boson, in order to
bring the data and simulation yields into agreement. The procedure used is identical to the one
described in Ref. [24]. Based on lepton + jets samples with various jet multiplicities, W+b and
W+c corrections are derived [48]. To account for differences between the lepton + jets topology
and the topology considered here, additional W+udsg and W+b/c corrections are derived from
two background-dominated event samples, one without any b-tagged jets and one without any
b-tagging requirement. These corrections are then applied to the simulated W+jets events. We
find that the W+b, W+c, and W+udsg contributions need to be corrected by an overall factor
of 1.21, 1.66, and 0.83, respectively. These corrections agree within their uncertainties with the
corresponding corrections derived in Ref. [24].
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Finally, the Emiss
T is required to exceed 20 GeV in both the electron and muon samples in order

to reduce the QCD multijet background.

5 Data analysis
The distinguishing feature of a W′ signal is a narrow resonance structure in the tb invariant-
mass spectrum. The tb invariant mass is reconstructed from the combination of the charged lep-
ton, the neutrino, the jet which gives the best top-quark mass reconstruction, and the highest-
pT jet in the event that is not associated with the top quark. The x and y components of the
neutrino momentum are obtained from the missing transverse energy. The z component is cal-
culated by constraining the invariant mass of the lepton-neutrino pair to the W-boson mass
(80.4 GeV). This constraint leads to a quadratic equation in pν

z . In the case of two real solutions,
both of the solutions are used to reconstruct the W-boson candidates. In the case of complex
solutions, the real part is assigned to pν

z and the imaginary part is forced to zero by relaxing the
W-boson mass constraint and recomputing pν

T. The pν
T solution that gives the invariant mass

of the lepton-neutrino pair closest to 80.4 GeV is chosen, resulting in a single W-boson candi-
date. Top-quark candidates are then reconstructed using the W-boson candidate(s) and all of
the selected jets in the event, and the top-quark candidate with mass closest to 172.5 GeV is
chosen. The W′-boson candidate is obtained by combining the best top-quark candidate with
the highest-pT jet, excluding the one used for the best top-quark candidate. For a 2.0 TeV W′R
boson, this procedure assigns the correct jets from the W′ decay 83% of the time.

Since the W+jets process is one of the major backgrounds for the W′ signal process (see Table 1),
a study is performed to check that the shape of the W+jets mass distribution is well-modelled
by the simulation. This cross-check utilizes the fact that events that have no b-tagged jets,
but satisfy all other selection criteria, are expected to originate predominantly from W+jets
events. The purity of W+jets events for this control sample is greater than 85%. The shape of
the W+jets background is obtained by subtracting the backgrounds from sources other than
W+jets from the distributions in data. The resulting invariant-mass distribution is compared to
the distribution from the W+jets MC sample with zero b-tagged jets. The difference between
the distributions is included as a systematic uncertainty in the shape of the W+jets background.
Using simulated events, the W+jets background was verified to be independent of the number
of b-tagged jets by comparing the mass distribution with zero b-tagged jets with that obtained
by requiring one or more b-tagged jets.

Measurements of the top-quark differential cross sections have shown that the top-quark pT
distribution is not properly modelled in simulated events [49]. We therefore reweight the tt
sample using an empirical function of the generated top quark and anti-quark pT determined
from studies of the tt differential cross section. Residual differences with respect to the un-
weighted distribution are taken into account as a systematic uncertainty in the tt background
prediction. We check the applicability of these weights to our kinematic region by defining
a control region in data that is dominated by tt events. The control region is defined by the
following requirements, which are designed to ensure small (.2%) potential signal contamina-
tion: Njets ≥ 4, the total number of b-tagged jets (including jets with pT values less than those
of the two leading jets) Nb-tags ≥ 2, and 400 < M(tb) < 750 GeV. We perform a fit to the ratio of
data to expected background events for the top-quark pT distribution using a Landau function
and reweight the events in the simulated tt sample using the result of the fit. This method gives
results that are consistent with the generator-level reweighting procedure.

Figure 1 shows the reconstructed tb invariant-mass distribution obtained from data and from
simulated W′ signal samples with four different mass values (M(W′) = 1.8, 2.0, 2.5, and
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3.0 TeV). Also shown are the dominant background contributions. The distributions are shown
after the preselection described in Section 4, as well as three final selection criteria which are
imposed to improve the signal-to-background discrimination: the pT of the selected top-quark
candidate pt

T > 85 GeV, the pT of the vector sum of the two leading jets pjet1,jet2
T > 140 GeV, and

the mass of the selected top-quark candidate with 130 GeV < M(t) < 210 GeV. The distribu-
tions are shown separately for the electron and muon samples, for events which have one or
both of the two leading jets tagged as b-jets. The number of events remaining with one and
two b-tagged jets after the preselection and final selection are listed in Table 1. The yields mea-
sured in data and those predicted from simulation agree within the statistical and systematic
uncertainties, which are described in the following section.

Table 1: Number of selected data, signal, and background events. For the background sam-
ples, the number of expected events is computed corresponding to an integrated luminosity of
19.5 fb−1. The final two columns for each sample include the following selections: pt

T > 85 GeV,
pjet1,jet2

T > 140 GeV, 130 < M(t) < 210 GeV. The combined statistical and systematic uncer-
tainty on the total background prediction is also shown. The standard model s-channel tb
process contributes to the background only in the search for W′R bosons owing to its interfer-
ence with the W′L → tb process. The number of events for the W′L signal takes into account the
interference with the SM s-channel tb process.

Number of selected events
Electron sample Muon sample

Preselection Final selection Preselection Final selection
Process 1 b-tag 2 b-tags 1 b-tag 2 b-tags 1 b-tag 2 b-tags 1 b-tag 2 b-tags
Signal:
M(W′R) = 1.8 TeV 45.2 12.7 32.2 9.3 38.0 10.8 26.3 7.7
M(W′R) = 2.0 TeV 20.9 5.6 14.6 4.0 17.5 4.7 11.8 3.2
M(W′R) = 2.5 TeV 3.5 0.9 2.3 0.6 3.0 0.8 1.8 0.5
M(W′R) = 3.0 TeV 0.8 0.3 0.5 0.2 0.7 0.2 0.4 0.2
M(W′L) = 1.8 TeV 143.0 60.9 57.1 19.7 148.8 63.7 58.1 19.5
M(W′L) = 2.0 TeV 125.2 57.9 44.7 17.8 128.3 61.0 45.7 18.1
M(W′L) = 2.5 TeV 115.8 58.6 38.4 17.2 122.3 62.6 41.6 17.7
M(W′L) = 3.0 TeV 121.3 58.1 41.0 16.7 126.6 64.4 42.2 17.9
Background:
tt 34561 7888 12383 1639 35349 8191 12610 1650
s-channel (tb) 175 93 58 28 196 102 63 32
t-channel (tqb) 2113 357 710 108 2275 373 747 114
tW-channel 2557 362 847 107 2645 372 861 113
W(→ `ν)+jets 19970 563 3636 99 19697 679 3704 62
Z/γ∗(→ ``)+jets 1484 83 260 10 1497 73 275 17
WW 205 9 47 3 219 7 47 2
Total bkg. 61065 9357 17942 1993 61877 9797 18307 1991

±6188 ±1504 ±2514 ±399 ±6098 ±1524 ±2488 ±400
Data 63050 9646 18175 2063 62955 9865 18558 2081
Total bkg. / Data 0.969 0.970 0.987 0.966 0.983 0.993 0.986 0.957

±0.10 ±0.16 ±0.14 ±0.19 ±0.10 ±0.15 ±0.13 ±0.19

6 Systematic uncertainties
The systematic uncertainties that are relevant for this analysis fall into two categories: (i) un-
certainties in the total event yield and (ii) uncertainties that impact both the shape and the total
event yield of the distributions. The first category includes uncertainties in the total integrated
luminosity of the data sample (2.6%) [50], lepton reconstruction and identification efficiencies
(1%), trigger modelling (1–2%), and the theoretical tt cross section (8%).
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Figure 1: The reconstructed invariant-mass distribution of the W′-boson candidates after the
final selection. Events with electrons (muons) are shown on the left (right) panel for data,
background and four different W′R signal mass hypotheses (1.8, 2.0, 2.5, and 3.0 TeV). All events
are required to have one or both of the two leading jets tagged as b-jets. The hatched bands
represent the total normalisation uncertainty in the predicted backgrounds. The pull is defined
as the difference between the observed data yield and the predicted background, divided by
the uncertainty. For these plots it is assumed that M(νR) � M(W′R) and for the purpose of
illustration the expected yields for the W′R signal samples are scaled by a factor of 20.
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The second category includes the uncertainty from the jet energy scale and resolution, and
from the b-tagging and the mis-tagging efficiency scale factors. For the W+jets samples, un-
certainties relating to the extraction of the light- (13%) and heavy-flavour (15%) scale factors
from data are also included [47]. As discussed in the previous section, additional uncertainties
are assigned relating to the W+jets background shape and to the top quark pT spectrum. The
variation of the renormalisation and factorisation scale Q2 used in the strong coupling constant
αs(Q2), and the jet-parton matching scale uncertainties in the MLM scheme [51] are evaluated
for the tt background sample. These uncertainties are evaluated by raising and lowering the
corresponding parameters by one standard deviation (or in the case of the renormalisation and
factorisation scale Q and the jet parton matching scale by a factor 2 and 0.5), and repeating the
analysis.

7 Results
The W′-boson mass distribution observed in the data and the prediction for the total expected
background agree within statistical and systematic uncertainties (see Table 1 and Fig. 1). We
set upper limits on the W′-boson production cross section for different W′-boson masses.

7.1 Cross section limits

The limits are computed using a Bayesian approach with a flat prior on the signal cross section
with the THETA package [52]. In order to reduce the bin-by-bin statistical uncertainty in the
predicted event yields obtained from the simulated samples, we bin the invariant-mass dis-
tribution using one bin from 100 to 300 GeV, 17 bins of 100 GeV width from 300 to 2000 GeV,
and two additional bins from 2000 to 2200 GeV and from 2200 to 4000 GeV. Four categories
are defined according to the lepton flavor (electron or muon) and b-tag multiplicity (one or
two b-tagged jets) to improve the sensitivity of the analysis. The resulting distributions serve
as the inputs to the limit setting procedure, and the limit is based on the posterior probabil-
ity defined by using all categories simultaneously. A binned likelihood is used to calculate
upper limits on the signal production cross section times total leptonic branching fraction:
σ(pp → W′) × B(W′ → tb → `νbb), where ` = e/µ/τ. The search is sensitive to the
W′ → tb → τνbb decay mode if the tau subsequently decays to an electron or muon. There-
fore τ → e/µ events are included in the signal and background estimations of the electron
and muon samples, respectively. The limit computation accounts for the effects of systematic
uncertainties (discussed in Section 6) in the normalisation and shape of the invariant-mass dis-
tributions, as well as for statistical fluctuations in the background templates. Expected limits
on the production cross section for each W′R-boson mass are also computed as a measure of the
sensitivity of the analysis.

In Fig. 2, the solid black line denotes the observed limit and the red lines represent the predicted
theoretical cross section times leptonic branching fractions. The lower mass limit is defined by
the mass value corresponding to the intersection of the observed upper limit on the production
cross section times leptonic branching fraction with the theoretical prediction. For W′ bosons
with right-handed couplings to fermions the observed (expected) limit is 2.05 (2.02) TeV at 95%
confidence level (CL). These limits also apply to a left-handed W′ boson when no interference
with the SM is taken into account. Assuming heavy right-handed neutrinos (M(νR) > M(W′)),
the observed (expected) limit is 2.13 (2.12) TeV at 95% CL.
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Figure 2: The expected (dashed black line) and observed (solid black line) 95% CL upper limits
on the production cross section of right-handed W′ bosons obtained for the electron sample
(top left), muon sample (top right), and their combination (bottom) along with the ±1σ and
±2σ uncertainty in the expected exclusion limit. The theoretical cross section times branching
fraction for right-handed W′-boson production σ(pp → W′R)× b(W′R → tb → `νbb), where
` = e/µ/τ, is shown as a solid (dot-dashed) red line, when assuming light (heavy) right-
handed neutrinos.
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7.2 Limits on coupling strengths

The effective Lagrangian given by Eq. (1) can be analysed for arbitrary combinations of left-
handed or right-handed coupling strengths [24]. The cross section for single-top-quark produc-
tion in the presence of a W′ boson for any set of coupling values can be written in terms of the
cross sections of our signal MC samples, σL for purely left-handed couplings (aL, aR) = (1, 0),
σR for purely right-handed couplings (aL, aR) = (0, 1), σLR for mixed couplings (aL, aR) =
(1, 1), and σSM for SM couplings (aL, aR) = (0, 0). It is given by:

σ = σSM + aL
udaL

tb (σL − σR − σSM)

+

((
aL

udaL
tb

)2
+

(
aR

udaR
tb

)2
)

σR

+
1
2

((
aL

udaR
tb

)2
+

(
aR

udaL
tb

)2
)
(σLR − σL − σR) .

(2)

Note that for pure W′R production this reduces to the sum of SM s-channel tb and W′R pro-
duction. For pure W′L or W′LR production this reduces to the cross section of the W′L or the
W′LR sample which already includes SM s-channel tb production and its interference with W′

production.

We assume that the couplings to first-generation quarks, aud, that are important for the produc-
tion of the W′ boson, and the couplings to third-generation quarks, atb, that are important for
the decay of the W′ boson, are equal. The event samples are combined according to Eq. (2) to
give the predicted invariant-mass distributions for each value of aL and aR.

We vary both aL and aR in the range (0,1) with a step size of 0.1, for each M(W′). For each
of these combinations of aL, aR, and M(W′), we determine the expected and observed 95% CL
upper limits on the cross section and compare them to the corresponding theoretical prediction.
If the limit is below the theoretical prediction, this point in (aL, aR, M(W′)) space is excluded.
Figure 3 shows the excluded W′-boson mass for each point in the (aL, aR) plane. The observed
(expected) mass limit for a W′ boson with only left-handed couplings, including interference
with the SM, is 1.84 (1.84) TeV.

8 Summary
We have performed a search for a W′ boson in the tb decay channel using a data set corre-
sponding to an integrated luminosity of 19.5 fb−1 of pp collisions collected by the CMS detec-
tor at

√
s = 8 TeV. No evidence for the presence of a W′ boson is found, and 95% confidence

level upper limits on σ(pp → W′) × B(W′ → tb → `νbb) are set. We compare our mea-
surement to the theoretical prediction for the cross section to determine the lower limit on the
mass of the W′ boson. For W′ bosons with right-handed couplings to fermions (and for left-
handed couplings to fermions, when assuming no interference effects) the observed (expected)
limit is 2.05 (2.02) TeV at 95% confidence level. In the case with heavy right-handed neutrinos
(M(νR) > M(W′R)), the observed (expected) limit is 2.13 (2.12) TeV at 95% confidence level. For
a W′ boson with only left-handed couplings, including interference effects, the observed (ex-
pected) limit is 1.84 (1.84) TeV at 95% confidence level. We also set constraints on the W′ gauge
coupling independent of their chiral structure. The results presented in this paper are the most
stringent limits obtained to date.
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Figure 3: Contour plots of M(W′) in the (aL, aR) plane for which the 95% CL cross section
limit equals the predicted cross section for the combined e, µ+jets sample. The left (right) panel
represents the observed (expected) limits. The colour axis represents the value of M(W′) in
GeV. The solid black lines are isocontours of W′-boson mass, plotted in 150 GeV intervals and
starting from 800 GeV.
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